Termination w.r.t. Q of the following Term Rewriting System could be proven:

Q restricted rewrite system:
The TRS R consists of the following rules:

active(c) → mark(f(g(c)))
active(f(g(X))) → mark(g(X))
mark(c) → active(c)
mark(f(X)) → active(f(X))
mark(g(X)) → active(g(X))
f(mark(X)) → f(X)
f(active(X)) → f(X)
g(mark(X)) → g(X)
g(active(X)) → g(X)

Q is empty.


QTRS
  ↳ DependencyPairsProof

Q restricted rewrite system:
The TRS R consists of the following rules:

active(c) → mark(f(g(c)))
active(f(g(X))) → mark(g(X))
mark(c) → active(c)
mark(f(X)) → active(f(X))
mark(g(X)) → active(g(X))
f(mark(X)) → f(X)
f(active(X)) → f(X)
g(mark(X)) → g(X)
g(active(X)) → g(X)

Q is empty.

Using Dependency Pairs [1,15] we result in the following initial DP problem:
Q DP problem:
The TRS P consists of the following rules:

F(mark(X)) → F(X)
MARK(f(X)) → ACTIVE(f(X))
MARK(c) → ACTIVE(c)
MARK(g(X)) → ACTIVE(g(X))
ACTIVE(c) → F(g(c))
ACTIVE(f(g(X))) → MARK(g(X))
ACTIVE(c) → G(c)
G(active(X)) → G(X)
ACTIVE(c) → MARK(f(g(c)))
G(mark(X)) → G(X)
F(active(X)) → F(X)

The TRS R consists of the following rules:

active(c) → mark(f(g(c)))
active(f(g(X))) → mark(g(X))
mark(c) → active(c)
mark(f(X)) → active(f(X))
mark(g(X)) → active(g(X))
f(mark(X)) → f(X)
f(active(X)) → f(X)
g(mark(X)) → g(X)
g(active(X)) → g(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

↳ QTRS
  ↳ DependencyPairsProof
QDP
      ↳ DependencyGraphProof

Q DP problem:
The TRS P consists of the following rules:

F(mark(X)) → F(X)
MARK(f(X)) → ACTIVE(f(X))
MARK(c) → ACTIVE(c)
MARK(g(X)) → ACTIVE(g(X))
ACTIVE(c) → F(g(c))
ACTIVE(f(g(X))) → MARK(g(X))
ACTIVE(c) → G(c)
G(active(X)) → G(X)
ACTIVE(c) → MARK(f(g(c)))
G(mark(X)) → G(X)
F(active(X)) → F(X)

The TRS R consists of the following rules:

active(c) → mark(f(g(c)))
active(f(g(X))) → mark(g(X))
mark(c) → active(c)
mark(f(X)) → active(f(X))
mark(g(X)) → active(g(X))
f(mark(X)) → f(X)
f(active(X)) → f(X)
g(mark(X)) → g(X)
g(active(X)) → g(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 3 SCCs with 4 less nodes.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
QDP
            ↳ QDPOrderProof
          ↳ QDP
          ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

G(active(X)) → G(X)
G(mark(X)) → G(X)

The TRS R consists of the following rules:

active(c) → mark(f(g(c)))
active(f(g(X))) → mark(g(X))
mark(c) → active(c)
mark(f(X)) → active(f(X))
mark(g(X)) → active(g(X))
f(mark(X)) → f(X)
f(active(X)) → f(X)
g(mark(X)) → g(X)
g(active(X)) → g(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [15].


The following pairs can be oriented strictly and are deleted.


G(active(X)) → G(X)
G(mark(X)) → G(X)
The remaining pairs can at least be oriented weakly.
none
Used ordering: Polynomial interpretation [25,35]:

POL(active(x1)) = 9/4 + x_1   
POL(mark(x1)) = 1/2 + (3/2)x_1   
POL(G(x1)) = (1/2)x_1   
The value of delta used in the strict ordering is 1/4.
The following usable rules [17] were oriented: none



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
            ↳ QDPOrderProof
QDP
                ↳ PisEmptyProof
          ↳ QDP
          ↳ QDP

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(c) → mark(f(g(c)))
active(f(g(X))) → mark(g(X))
mark(c) → active(c)
mark(f(X)) → active(f(X))
mark(g(X)) → active(g(X))
f(mark(X)) → f(X)
f(active(X)) → f(X)
g(mark(X)) → g(X)
g(active(X)) → g(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The TRS P is empty. Hence, there is no (P,Q,R) chain.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
QDP
            ↳ QDPOrderProof
          ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

F(mark(X)) → F(X)
F(active(X)) → F(X)

The TRS R consists of the following rules:

active(c) → mark(f(g(c)))
active(f(g(X))) → mark(g(X))
mark(c) → active(c)
mark(f(X)) → active(f(X))
mark(g(X)) → active(g(X))
f(mark(X)) → f(X)
f(active(X)) → f(X)
g(mark(X)) → g(X)
g(active(X)) → g(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [15].


The following pairs can be oriented strictly and are deleted.


F(mark(X)) → F(X)
F(active(X)) → F(X)
The remaining pairs can at least be oriented weakly.
none
Used ordering: Polynomial interpretation [25,35]:

POL(active(x1)) = 1/2 + (3/2)x_1   
POL(mark(x1)) = 9/4 + x_1   
POL(F(x1)) = (1/2)x_1   
The value of delta used in the strict ordering is 1/4.
The following usable rules [17] were oriented: none



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
            ↳ QDPOrderProof
QDP
                ↳ PisEmptyProof
          ↳ QDP

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(c) → mark(f(g(c)))
active(f(g(X))) → mark(g(X))
mark(c) → active(c)
mark(f(X)) → active(f(X))
mark(g(X)) → active(g(X))
f(mark(X)) → f(X)
f(active(X)) → f(X)
g(mark(X)) → g(X)
g(active(X)) → g(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The TRS P is empty. Hence, there is no (P,Q,R) chain.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
QDP
            ↳ QDPOrderProof

Q DP problem:
The TRS P consists of the following rules:

MARK(f(X)) → ACTIVE(f(X))
MARK(g(X)) → ACTIVE(g(X))
ACTIVE(f(g(X))) → MARK(g(X))

The TRS R consists of the following rules:

active(c) → mark(f(g(c)))
active(f(g(X))) → mark(g(X))
mark(c) → active(c)
mark(f(X)) → active(f(X))
mark(g(X)) → active(g(X))
f(mark(X)) → f(X)
f(active(X)) → f(X)
g(mark(X)) → g(X)
g(active(X)) → g(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [15].


The following pairs can be oriented strictly and are deleted.


MARK(f(X)) → ACTIVE(f(X))
MARK(g(X)) → ACTIVE(g(X))
ACTIVE(f(g(X))) → MARK(g(X))
The remaining pairs can at least be oriented weakly.
none
Used ordering: Polynomial interpretation [25,35]:

POL(active(x1)) = (7/4)x_1   
POL(MARK(x1)) = 4 + (2)x_1   
POL(f(x1)) = 13/4 + (13/4)x_1   
POL(g(x1)) = (9/4)x_1   
POL(mark(x1)) = (9/4)x_1   
POL(ACTIVE(x1)) = 15/4 + (5/4)x_1   
The value of delta used in the strict ordering is 1/4.
The following usable rules [17] were oriented:

f(mark(X)) → f(X)
f(active(X)) → f(X)
g(active(X)) → g(X)
g(mark(X)) → g(X)



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
          ↳ QDP
            ↳ QDPOrderProof
QDP
                ↳ PisEmptyProof

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(c) → mark(f(g(c)))
active(f(g(X))) → mark(g(X))
mark(c) → active(c)
mark(f(X)) → active(f(X))
mark(g(X)) → active(g(X))
f(mark(X)) → f(X)
f(active(X)) → f(X)
g(mark(X)) → g(X)
g(active(X)) → g(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The TRS P is empty. Hence, there is no (P,Q,R) chain.